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LE'ITER TO THE EDITOR 

Thermal processes in the hydrodynamic stage in terms of 
non-equilibrium thermofield dynamics 

Toshihico Arimitsu 
Institute of Physics, University of Tsukuha, Iharaki 305, Japan 

Received 23 July 1991, in final form 5 August 1991 

Abstract, The thermal processes in the hydrodynamic stage are investigated within the 
formalism of non-equilibrium thennofield dynamics (NETFD) where the concepts in non- 
equilibrium thermodynamics are implanted. The treatment gives us a good indication for 
an understanding of the new concept, the spontaneous creation of dissipation, in conjunction 
with the realization of the representation space within NETFD. 

The framework of non-equilibrium thermofield dynamics (NETFD) was firstly con- 
structed [l ,  21 by, SO to speak, a principle of correspondence (mapping rules) based 
upon the damping theoretical argument within the density operator formalism [3,4]. 
It was shown that the framework is constructed upon the seven axioms [SI. Then the 
most general expression of the renormalized time-evolution generator in the interaction 
representation was derived together with an equation for the one-particle distribution 
function [6,7]. Within these aspects, the canonical formalism of dissipative quantum 
fields in NETFD was formulated, and the close structural resemblance between NETFD 

and usyal quantum field theories was revealed [8,9]. Furthermore, the generating 
functional within NETFD was derived [lo], and the relation between NETFD and the 
closed time-path methods [ll-131 was shown [I41 mainly in the kineticstage. Recently, 
it was shown that the framework of NETFD is wide and general enough to include the 
quantum Langevin equation and the quantum stochastic Liouville equation approach 
as well [15-181. 

The structural resemblance of NETFD with usual quantum field theories showed us 
vividly the dual structure, i.e. the operator algebra and the representation space, of the 
dissipative quantum field theory for far-from-equilibrium states NETFD. The strong 
analogy between the mechanism of the spontaneous (dynamical) breakdown of symmetry 
within usual quantum field theories and that of the appearance of the dissipative 
time-evolution generator within NETFD made us to propose a new concept named the 
spontaneous (dynamical) creation ofdissipation [6,7; 19-22] which is still to be clarified. 

In this letter, we will implant the concepts of non-equilibrium thermodynamics 
1231, which have not been introduced in usual quantum field theories, into NETFD in 
order to understand and/or to extend the formalism further, standing on the reliable 
basis of thermodynamics. We confine ourselves to investigation in the hydrodynamic 
stage as it should be, and consult the treatment proposed by Kubo [24] and by Zubarev 
[25]. We will present the formalism in its most general form; however we will bear an 
e-component liquid system in mind for clarity. 
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Heisenberg fields, +(x, t )  and +'(x, 1) .  within the formalism NETFD have their 
partner fields, &x, t )  and ?(x, f ) ,  respectively. The tilde conjugation - is defined by 
(A,Az)-=A,&, ( C , A , + C ~ A Z ) - = C ~ A , + C ~ A Z .  (A)-=uA, and (Af)-=A',  with 
arbitrary operators Ai and c-numbers ci, where U =  I(-1) for bosonic (fermionic) 
operator. The tilde and non-tilde Heisenberg fields are related with each other through 
the relations [&x, f)l-=u+(x, f ) ,  [6'(x, t ) l - = ~ + ~ ( x ,  f ) ,  and (I!g(x,  I) =(I~+'(X, 1 ) .  
The thermal vacuums (11 and 10) are tilde invariant: (l!-=(ll, lO)-=lO). The time- 
evolution generator within NETFD is fi = H - ?, where H is a Hapiltonian of a system. 
It has the property called Tildian: (iG)-=iH, and satisfies (1IH = O  [1,2]. 

One of the most important concepts in non-equilibrium thermodynamics is the 
concept of the focal equilibrium state [23] which can be specified by the generalized 
Block equation: 

where P,,,(x) are Hermite operators corresponding to a set of gross variables. The 
Heisenberg operators P,,,(x, 1 )  = e'"'P,,,(x) eCiH' can be the total energy density operator, 
the total momentum density operator and the number density operator n,(x, f )  of the 
ith component in the case of an [-component system, for example, and satisfy a set 
of equations of the form 

(3) 

The currents j,,,(x, t )  should be the operator of the total energy flux density, of the 
total stress tensor and of the number flux density j J x ,  t )  of the ith component. The 
operators J,,,(x, t )  describe some possible sources. The real valued c-number functions 
F,,,(x, f )  in (1) are the conjugate to the corresponding operators Pm(x, 1 ) .  They can be 
the inverse of the local temperature p ( x ,  I), the local average velocity - p ( x ,  t ) u ( x ,  t )  
with u(x, f )  =Zf=, ji(x, f ) ) t , t / ( X f = ,  ni(x, r ) )c t ,  where (. . .),,< is defined by (6 )  below, 
and the local chemical potential of the ith component -@(x, t ) [  pi(x,  t )  - mp'(x, f ) / 2 ]  
with mi being the mass of a ith component molecule. The functional derivative in (1) 
should be interpreted in the sense that SF.(x', t)/SF,,,(x, I ) =  S,,(x-x'). The inner 
product of the local equilibrium thermal bra- and ket-vacuum is the partition function: 

According to the mapping rules given in [l, 21, the local equilibrium thermal vacuum 

d 

J t  
- P A X ,  t ) + V j , , , ( X ,  t)=Jm(sO. 

(1 ls (o) /=  Q / ( t ) .  

defined by (1) can be expressed as 

with 

Bf, , , (x)  = F,,,(x, f)P,,,(x) ( 5 )  

The local equilibrium state is specified under the condition that the information 
entropy be a maximum at given values of the gross variables (P,,,(x, f ) ) , , ( ,  which depend 
on the macroscopic space and time coordinates, where 

(. . &= @ ( t ) - l ( l ! .  .: !O,?(t))! (6) 
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with the local equilibrium thermal vacuum in the Heisenberg representation: 

L1417 

Therefore there is arbitrariness in the specification of these quantities. Following 
Kubo [24] and Zubarev [25], we shall specify them in such a way that they satisfy 
the hydrodynamic equations of an ideal liquid: 

(9 )  
a 
-(pm(x, f ) ) , . t+V(j , , , (x ,  t ) ) , , c = o .  
J t  

Note that the local equilibrium thermal vacuum (7) can be expressed as IOH([))<= 
II,/O,(x, [ ) ) e ,  with 10H(x, t ) ) e  = lexp[-Z, B:(x, f)]). The hydrodynamic equations ( 9 )  
may be interpreted in the way that they determine the connection among the local 
thermal vacuums IOH(x, [ ) ) e .  

For the local equilibrium state, we have 

Furthermore we have the thermodynamic relation of the form 

S(X, [ ) = Z F m ( X ,  W m ( X ,  t ) ) c . t + P ( s  t ) P ( X ,  [I. (11) 
m 

where S(x, f )  is the entropy density, and p ( x ,  f )  is the local pressure which is related 
to the partition function Ql ( t )  by the relation 

In Q t ( [ ) = I  d x P k  M x ,  t ) .  (12) 

We see from (11) that the thermodynamic parameters Fm(x, 1 )  are determined by 

Now, following Kubo [24] and Zubarev [2S], let us introduce a thermal vacuum 
state in the Shrodinger representation, for non-equilibrium systems in the hydrodynamic 
stage, by the generalized Bloch equation 

The generalized Bloch equation (14) satisfies causality in the sense that the thermal 
vacuum IOs([))= is determined by the thermodynamic parameters Fm(x, 1')  in past time 
f ' ( f  a f ' ) .  The functional derivative here in (14) should be interpreted in the sense that 
6Fn(x', t')/SF,,,(x, f )  = 6,,6(x - x ' ) 6 ( f  - r'). The inner product of the thermal bra- and 
ket-vacuum is the partition function: (I ls(f)) .  = Q ( t h  



L1418 Letter to the Editor 

Using to the mapping rules given in [ 1,2], the thermal vacuum defined by (14) can 
be expressed as 

0 r . . ... - . .. -. . 
= -  dl'e"j'"(x, t')X,(x, t + t ' ) .  (14) J -m 

The thermal vacuum (16) is specified by the condition that 

(P*(x, I)) = (P*(x, 0 ) t . I  (20) 
where the average (. . .) with respect to the non-equilibrium thermal vacuum is defined 
by 

(A(r)) = lim O-'(t)(llA(t)lo,(t)). (21) 
r-0 

with the thermal vacuum in the Heisenberg representation: 

The Heisenberg operator A(t) = eiA'A e-"*; satisfies the Heisenberg equation of motion 
within NETFD [1,2]: dA(r)/dt=i[tj,A(t)]. 

In the derivation of the expression (19) from (18). one needs a long and cumbersome 
calculation with a knowledge of thermodynamics. The thermodynamic current 
operators j" (x ,  1 )  reduce to the thermal flux, the viscous flux and the diffusional flux 
in the case of the e-component system, for example. On the other tiand, the thetmody- 
namic forces X,(r 1 )  represent Vp(r t), -p(q r)V: u(x, t), and -V[p(x, t)pi(x, t ) l .  

- = e%s(~))s. (22) 

We see that the thermal vacuum (16) satisfies the Shrodinger equation: 

(23) 
a 
- 1 0 ~ ( t ) ) ~  +iAlos(r)), = e&+ ~ , ) I o ~ ( ~ D ~  
dt 

with 

, 
where I?,,(*) is given by taking A of (18) or (19) with 

jm(x, t )=f[ jm(x,  t ) + j " + ( x ,  t)] 

and 

-2[( E ,  &E,+ &&E:) +TC]} 

+[higher order terms with respect to E]. 
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The symbol TC indicates to take a tilde conjugation. We have introduced an abbreviation 
like E, = Em,&,) in (26).  The right-hand side of (23) represents a symmetry breaking 
effect due to the thermal processes. It may be much more vivid if we write down the 
time-evolution equation of the thermal vacuum in the Heisenberg representation: 

with 

where 

Because of the existence of thermal processes, the Heisenberg thermal vacuum (22) 
changes in time due to the right-hand side of (27), a symmetry breaking term. 

With the help of the mapping rules [ 1,2], the thermal vacuum (22) can be expressed 
as 

I O H ( ~ ) ) ~  = [ eXP[ -1 [ dx &(x, t )  I> 
E,(+ I )=e '" 'Em, , (x )e - 'A '=E~(x ,  t ) + I I m ( x , t )  (31) 

where II,(x, I) is given by (29) by replacing?(x, t )  with j m ( x ,  1 ) .  

The kinetic coefficients for the thermal processes can he obtained by considering 
a linear response to the thermodynamic forces Xm(x, I ) .  Up to the first order terms 
with respect to X,,,(x, I ) ,  we have 

(30) 
m 

with 

with 

where 

&x, r )  = E',(x, I )  -ii;+(x, I). (34) 
Then we obtain the linear response formula for the thermal current in the form 

e L. 
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where we have iniroduced 

The correlation function (36)  is the symmetrized one [26 ] .  In deriving the formula, 
we used the properties 

(!$;(s t) Y,,.., 6 8 [ . .  .,,""\ #)In..(+)\ . / , I .  c .=e,  (39) 

Irreversibility reveals itself as the positivity of the local entropy production rate 

which is introduced through the balance equation for the entropy: 

(41) 
d 
-S(x, t )+Vjs(x ,  1 )  = u ( x ,  1 ) .  
J f  

The entropy current density j s ( x ,  t )  is given by 

jdx ,  t ) = X  F,(x, f ) ( j m ( x ,  t ) ) + B ( x ,  t )p(x,  t )u (x ,  f ) .  (42) 
m 

The positivity of u(x, 1 )  is nothing but the second law of thermodynamics. 
In summarizing, we have introduced the fundamental concepts of non-equilibrium 

thermodynamics into NETFD in its most general way. The choice of a set of gross 
variables may be related to that of the representation space [27 ] .  Once we have a set 
of gross variables, we can extract the dynamical motion which is in resonance with 
the local equilibrium state constituted by the gross variables as has been shown in this 
letter explicitly. The cross terms between tilde and non-tilde operators in HI,, (26),  
which is constituted of nonlinear terms with respect to the thermodynamic forces, may 
have an important role in the description of non-equilibrium dissipative dynamics 
[ 1 , 2 ] .  A detailed version of the formalism introduced in this letter will be given in 
separate papers with some applications and with a further investigation of the concepts, 
such as the minimum entropy production, the excess entropy, the general criterion of 
time-evolution and so on [23 ,28] ,  in terms of NETFD. 

Before closing this letter, it should be mentioned that the response to a mechanical 
disturbance [26] can be taken into account by infroducing the effect of the disturbance 
in the form of a Hamiltonian, i.e. the form of H. 

The author would like to thank Drs H. Umezawa, Nakamura and Y Yamanaka for 
comments and discussions. 
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