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LETTER TO THE EDITOR

Thermal processes in the hydrodynamic stage in terms of
non-equilibrium thermofield dynamics

Toshihico Arimitsu
Institute of Physics, University of Tsukuba, Ibaraki 305, Japan

Received 23 July 1991, in final form 5 August 1991

Abstract. The thermal processes in the hydrodynamic stage are investigated within the
formalism of non-equilibrium thermofield dynamics (NETFD) where the concepts in non-
equilibrium thermodynamics are implanted. The treatment gives us a good indication for
an understanding of the new concept, the spontaneous creation of dissipation, in conjunction
with the realization of the representation space within NETFD.

The framework of non-equilibrium thermofield dynamics {NETFD) was firstly con-
structed [1, 2] by, so to speak, a principle of correspondence (mapping rules) based
upon the damping theoretical argument within the density operator formalism [3, 4].
It was shown that the framework is constructed upon the seven axioms {5]. Then the
most general expression of the renormalized time-evolution generator in the interaction
representation was derived together with an equation for the one-particle distribution
funetion [6, 7). Within these aspects, the canonical formalism of dissipative quantum
fields in NETFD was formulated, and the close structural resemblance between NETFD
and usyal quantum field theories was revealed [8,9]. Furthermore, the generating
functionial within NETFD was derived [10], and the relation between NETFD and the
closed time-path methods [11-13] was shown [14] mainly in the kinetic stage. Recently,
it was shown that the framework of NETFD is wide and general enough to include the
quantum Langevin equation and the quantum stochastic Licuville equation approach
as well [15-18].

The structural resemblance of NETFD with usual quantum field theories showed us
vividly the dual structure, i.e. the operator algebra and the representation space, of the
dissipative quantum field theory for far-from-equilibrium states NETFD. The strong
analogy between the mechanism of the spontaneous (dynamical) breakdown of symmetry
within usual quantum field theories and that of the appearance of the dissipative
time-evolution generator within NETFD made us to propose a new concept named the
spontaneous ( dynamical) creation of dissipation 6,7, 19-22) which is still to be clarified.

In this letter, we will implant the concepts of non-equilibrium thermodynamics
[23], which have not been introduced in usual quantum field theories, into NETFD in
order to understand and/or to extend the formalism further, standing on the reliable
basis of thermodynamics. We confine ourselves to investigation in the hydrodynamic
stage as it should be, and consult the treatment proposed by Kubo [24] and by Zubarev
[25]. We will present the formalism in its most general form; however we will bear an
£-component liquid system in mind for clarity.
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Heisenberg fields, ¢(x, f) and ¢'(x, 1), within the formalism NETFD have their
partner fields, n,b(x, t) and §'(x, 1), rcspecttvely The tilde conjugation ~ is defined by
(AAZ)” =A (Ag, (0 A1+ Ay =ckA +cfA,, (A)” =04, and (A" = A", with
arbitrary operators A; and c-numbers ¢;, where o=1{(—1) for bosonic (fermionic)
operator. The tilde and non-tilde Heisenberg fields are related with each other through
the relations [{/(x, 1)]™ = ow(x, 1), (&' (x, N1 =o' (x, 1), and (1]¢"(x, ) = (| (x, 1).
The thermal vacuums (1| and |0) are tilde invariant: (1|™=(1|, [0)” =|0). The time-
evolution generator within NETFD is H = H — H where H is a Hamiltonian of a system.
It has the property called Tildian: (iH)™ =iH, and satisfies (1|H 0[1,2]

One of the most important concepts in non-equilibrium thermodynamics is the
concept of the local equilibrium state [23] which can be specified by the generalized
Block equation:

o

BF—,,,(_NS(’»‘"—P (X N0s(1)), (0
with
B, (x)=4P,x)+ Pl (x)] (2)

where P, (x) are Hermite operators corresponding to a set of gross variables. The
Heisenberg operators P, (x, t) = e P_(x) e """ can be the total energy density operator,
the total momentum density operator and the number density operator »;(x, t) of the
ith component in the case of an {-component system, for example, and satisfy a set
of equations of the form

%Pm(x, D+Tjnlx, 1) =T (5 1). 3)

The currents j,(x, t} should be the operator of the total energy flux density, of the
total stress tensor and of the number Aux density j,(x, ¢} of the ith component. The
operators J,, (x, t) describe some possible sources. The real valued c-number functions
F..(x, 1} in (1) are the conjugate to the corresponding operators P,.(x, t). They can be
the inverse of the local temperature B(x, 1), the local average velocity —B{(x, t)v(x, 1)
with o(x, 1) =2, ji(x, ) /(22 milx, r)ye, where (...}, is defined by (6) below,
and the local chemical potential of the ith component —8(x, 1)[ u:(x, t) — mv’(x, 1)/2]
with m; being the mass of a ith component molecule. The functional derivative in (1)
should be interpreted in the sense that &F,(x', t}/6F,(x, 1}=§,,(x—x'). The inner
product of the local equilibrium thermal bra- and ket-vacuum is the partition function:
(1]s(£)ye = Qu(t).

According to the mapping rules given in[1, 2], the local equilibrium thermal vacuum
defined by (1) can be expressed as

exp[—% f dx B‘,:,,t(x)]> (4)

By, (x)= F(x, 1) Pu(x) (5)
The local equilibrium state is specified under the condition that the information

entropy be a maximum at given values of the gross variables (P, (x, 1)), ,, which depend
on the macroscopic space and time coordinates, where

(.e= QAN 10, (), (6)

e

|0s(t))e =

with
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with the local equilibrium thermal vacuum in the Heisenberg representation:
exp[—): j dx BZ(x, t)]) (7)

B (x, t) =B}, (x) e = F(x, ) P(x, 1). (8)

104(0))e = (05 (£)) =

with

Therefore there is arbitrariness in the specification of these quantities. Following
Kubo [24] and Zubarev [25], we shall specify them in such a way that they satisfy
the hydrodynamic equations of an ideal liquid:

P Do Vim0 =0, ©)

Note that the local equilibrium thermal vacuum (7} can be expressed as |[0x(4), =
IL |04 (x, ))e, with |04(x, 1)), = lexp[—=.. BL(x, 1)]). The hydrodynamic equations {9)
may be interpreted in the way that they determine the connection among the local
thermal vacuums |Og(x, ¢)},.

For the local equilibrium state, we have

8 1n Q.(1)
1)), o= el 10
(Pr(x, th e SF.(x 1) (10)
Furthermore we have the thermodynamic relation of the form
S(x, 1) =% Fulx, 1)(Pu(x, 1)) e+ B(x, )p(x, 1), (11)

where S(x, t) is the entropy density, and p(x, t) is the local pressure which is related
to the partition function Q.(f) by the relation

In Qz(t)=f dxB(x, t)p(x, ). : (12)

We see from (11) that the thermodynamic parameters F,,(x, t) are determined by
85(1)
(P (x, )¢
Now, following Kubo [24] and Zubarev [25], let us introduce a thermal vacuum

state in the Shrodinger representation, for non-equilibrium systems in the hydrodynamic
stage, by the generalized Bloch equation

_ %
8F,.(x, 1)

Fo(x, t}= S(t)=jdx5(& t). (13)

|0s(t).)s =—e e IB, (x, ' Djos(1)). (14)

with r= ¢, where

Bo(x)=e™ B (x)ye (15)
The generalized Bloch equation (14) satisfies causality in the sense that the thermal
vacuum |0g(1)}, is determined by the thermodynamic parameters F,,(x, £') in past time
t'(1 = t'). The functional derivative here in (14) should be interpreted in the sense that
8F,(x', t'}/ 8F,(x, t) = 8, ,6(x —x')8(1 —t'). The inner product of the thermal bra- and
ket-vacuum is the partition function: (1|s(¢)). = Q(t).
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Using to the mapping rules given in [1, 2], the thermal vacuum defined by (14) can
be expressed as

[0s(2)), = exp[—ZJ' dx Bm,.(x)]> (16)
where
"0
B fx)a== A a®T'E (v 4 4N\D (v N B (LVLTT () {17y
m A} ‘,J_m“‘ R S ARV ER AT N L\ A) T Aim \R) \i/7)
with
4]
. , aF, (x, t+¢
M=~ are| Fute e pus 0+ 2B D p )] (1)
0
=_J de e® j™ (x, 1) Xu(x, t+1). 19)
—o0

The thermal vacuum (16) is specified by the condition that

(Pri(x, 1)) ={Pry (x, 1)) (20
where the average (. . .) with respect to the non-equilibrium thermal vacuum is defined
by

(A(t))=li113 QTN A(I0u(1)). (21)

with the thermal vacuum in the Heisenberg representation:

104(1))e = &' #[05(1)). ‘ (22)
The Heisenberg ooerator At = e 'A e A . satisfies the Heisenberg equation of motion
within NETFD [1 2] dA(t)/dt —1[H A(t)]

In the derivation of the expression (19} from (18), one needs a long and cumbersome
calculation with a knowledge of thermodynamics. The thermodynamic current
operators j™(x, t} reduce to the thermal flux, the viscous flux and the diffusional flux
in the case of the /-component system, for example. On the other hand, the thermody-
namic forces X,,(x, t) represent VB(x, t), —B(x, 1)V:v(x, 1}, and —V[B(x, Hu(x, 1)].

We see that the thermal vacuum (16) satisfies the Shrodinger equation:

Z105(10) + A0S0, = el + SISO, (23)
with

M=% I dx ﬁ;n.r(") (24)
where ﬁm‘,(x) is given by taking A of {18) or (19) with

J™x =" 0+ (x 0] (25)
and

Y

DDIDX J. dx, dezJ dxs{[BleBa"'Ble§§+ B|§;§;+ EIE;B;]"‘TC

X 3 my my m;
—2[(B,B,B,+ B, B,Bl)+1c]}
+[higher order terms with respect ta B]. (26)
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The symbol T¢ indicates to take a tilde conjugation. We have introduced an abbreviation
like B, = B, .(x,) in (26). The right-hand side of (23) represents a symmetry breaking
effect due to the thermal processes. It may be much more vivid if we write down the
time-evolution equation of the thermal vacuum in the Heisenberg representation:

> 10w(1)). = elf1(0)+ ST 0w (1), @)
with

=y I dx11,.(x, 1) 811(1) = TSR, e (28)
where

f,.(x, ="M, (x)e F=- [ de'e e XL (x5 ). (29)

Because of the existence of thermal processes, the Heisenberg thermal vacuum (22)
changes in time due to the right-hand side of (27), a symmetry breaking term.
With the help of the mapping rules [1, 2], the thermal vacuum (22) can be expressed

as
exp[—z J.dx B, (x, t)]> (30)

B, (x,t)=¢" "B, (x) e = B (x, 1) +11.(x, 1) (31)

where I1,,(x, t) is given by (29) by replacing f’"(x, t) with j™(x, 1).

The kinetic coeflicients for the thermal processes can be obtained by considering
a linear response to the thermodynamic forces X, (x, t). Up to the first order terms
with respect to X,,(x, 1), we have

[0yi(£))e = [1 +1 I dx J.t dr Jl dr ™5, 15 ir) X (x, t’)]|0u(1)):,
m —co Q

04(2)), =

with

(32)
with
Jf""(.\:, t'; it) =cxp[—r y I dx B(x, t)]f'"(x, t') exp[r y J- dx Bi(x, t)] (33)
& X

where

BL(x, )= Bl(x, 1) - Bil(x, 1). (34)
Then we obtain the linear response formula for the thermal current in the form
Si"(x, th=1limY} J dx’ J dres" (", 1), f’"(x’, t"NX,.(x, 1) (35)

=0 m — .

with

G"(x t), S (2, )= j dr{j"(x, O (%, 5 i1) = (S i) D

Il

SRR

_L d({8j"(x, 1), 8" (%', ' iT) P (36)
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where we have intfoduced
8™ (x, ) =" (x, 1) —{j" (x, D¢ (37)
& (x tir) =" (x, ';ir) = (" (x, D), (38)

The correlation function (36} is the symmetrized one [26). In deriving the formula,
we used the properties

=N f10)Y
e \J7)
Irreversibility reveals itself as the positivity of the local entropy production rate

o(x 1) =L (™ (x, 1) Xpu(x, 1) (40)

which is introduced through the balance equation for the entropy:

: =505, 0+ Vjs(x, 0= olx, 1. | (41)

The entropy current density js(x, ) is given by

Js(x 1) =% Fo(x, ){jm(x, 1))+ B(x, )p(x, tho(x, ). (42)

The positivity of ¢(x, t) is nothing but the second law of thermodynamics.

In summarizing, we have introduced the fundamental concepts of non-equilibrium
thermodynamics into NETFD in its most general way. The choice of a set of gross
variables may be related to that of the representation space [27]. Once we have a set
of gross variables, we can extract the dynamical motion which is in resonance with
the local equilibrium state constituted by the gross variables as has been shown in this
letter explicitly. The cross terms between tilde and non-tilde operators in 81'[,, (26),
which is constituted of nonlinear terms with respect to the thermodynamic forces, may
have an important role in the description of non-equilibrium dissipative dynamics
[1,2]. A detailed vérsion of the formalism introduced in this letter will be given in
separate papers with some applications and with a further investigation of the concepts,
such as the minimum entropy production, the excess entropy, the general criterion of
time-evolution and so on [23,28], in terms of NETFD.

Before closing this letter, it should be mentioned that the response to a mechanical
disturbance [26] can be taken into account by m}roducmg the effect of the disturbance
in the form of a Hamiltonian, i.e. the form of H.

The author would like to thank Drs H. Umezawa, Nakamura and Y Yamanaka for
comments and discussions.
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